O termo fotossíntese significa síntese pela luz, sendo o processo pelo qual plantas, algas e algumas bactérias utilizam a energia luminosa para produzir matéria orgânica. A fotossíntese é o principal meio de produção de energia dos seres autotróficos. Esse processo geralmente utiliza gás carbônico (CO2) e água (H2O) para a produção de matéria orgânica na forma de glicídios, a qual servirá de alimento para o organismo, liberando também gás oxigênio (O2) para a atmosfera no processo. Praticamente todo o oxigênio que compõe a atmosfera atual da Terra é resultado da fotossíntese.
Dessa forma, a equação geral da fotossíntese é:
12 H2O + 6 CO2 → 6 O2 + C6H12O6 + 6 H2O
Estrutura das células fotossintetizantes
Nas células, a fotossíntese ocorre em organelas chamadas de cloroplastos, a qual contém pigmentos responsáveis pela absorção da energia luminosa. O pigmento fotossintetizante mais conhecido é a clorofila, mas alguns organismos utilizam carotenoides e ficobilinas.
Os dois fotossistemas funcionam de forma independente, mas são ligados por uma cadeia de moléculas transportadoras de elétrons. Os fotossistemas se organizam ainda em dois complexos: complexo antena e centro de reação. O complexo antena é formado por moléculas de pigmento que captam a energia da luz e a transfere até chegar ao centro de reação. O centro de reação é o local onde a energia luminosa vai ser convertida em energia química.
Reações da fotossíntese
A fotossíntese é composta por uma série de reações químicas. Estas reações são divididas em duas fases na fotossíntese: a fase clara ou fotoquímica e a fase escura ou puramente química.
A fase clara ocorre durante o dia, pois depende da presença de luz para acontecer. Essa fase ainda pode ser dividida em dois processos: a fotofosforilação e a fotólise da água. Já a fase escura, não depende da luz para ocorrer, sendo composta pelo processo chamado de ciclo das pentoses ou ciclo de Calvin-Benson.
Fotofosforilação
A fotofosforilação é o processo de produção de energia na forma de adenosina-trifosfato (ATP) a partir da energia luminosa. A energia luminosa que incide sobre os organismos fotossintetizantes causa uma excitação dos elétrons de uma ou mais moléculas de clorofila do complexo antena. As moléculas de clorofila excitadas transferem a energia, mas não o elétron, para moléculas de clorofila vizinhas do complexo antena, excitando-as também. Essa transferência vai ocorrendo até chegar ao centro de reação do fotossistema.
Quando uma molécula de clorofila do centro de reação recebe a energia, seus elétrons são excitados de forma a atingir um nível superior de energia e serem transferidos para uma molécula transportadora de elétrons. A fotofosforilação pode ser de dois tipos: fotofosforilação cíclica e acíclica.
A fotofosforilação cíclica ocorre no fotossistema I, composto basicamente por clorofila a. Ao receber a energia luminosa, um par de elétrons excitados deixa a molécula de clorofila a. A partir disso, o elétron vai sendo transferido de uma substância para a outra em uma cadeia transportadora de elétrons. Após a passagem por essa cadeia, retornam a molécula de clorofila, ocupando seu lugar e fechando a fotofosforilação cíclica.
Já na fotofosforilação acíclica, os fotossistemas I e II trabalham em conjunto. No fotossistema II predomina a clorofila b. Durante o processo a clorofila a do fotossistema I que recebeu a energia luminosa perde um par de elétrons excitados, sendo recolhidos por uma molécula aceptora de elétrons. Esses elétrons vão sendo passados por uma cadeia transportadora de elétrons, na qual último aceptor é uma molécula chamada de NADP+ (fosfato de dinucleotídeo de nicotinamida-adenina), que se torna NADPH2 ao receber os elétrons.
No fotossistema II, a clorofila b, também excitada pela luz, perde um par de elétrons. Esse par atravessa outra cadeia transportadora de elétrons que liga os dois fotossistemas, chegando ao fotossistema I e ocupando o lugar do elétron perdido pela clorofila a. Como os elétrons que voltam para a clorofila a não são os mesmos que foram perdidos por ela, mas sim os doados pela clorofila b, essa etapa da fotossíntese é chamada de fotofosforilação acíclica.
Ao passar pela cadeia transportadora, esses elétrons liberam energia que vai ser utilizada para realizar a passagem prótons (H+) através das membranas tilacóides, passando do estroma do cloroplasto para o interior do tilacóide ou lúmem. A alta concentração de H+ acumulados no interior dos tilacóides cria uma pressão para a sua saída. A forma que esses íons encontram de sair é através de um complexo enzimático transmembrana chamado de sintetase de ATP. Esse complexo funciona como um motor molecular, que gira com a passagem de H+, unindo moléculas de ADP com fosfatos (Pi) para a produção de ATP.
Tanto esse ATP quanto o NADPH2 produzido ao final da cadeia transportadora de elétrons, vão ter um papel no ciclo das pentoses da fase escura. Vale lembrar que a molécula de clorofila b continua sem seu par de elétrons, que só vai ser reposto no processo de fotólise da água.
Fotólise da água
A molécula de clorofila que perdeu seu elétron após a excitação pela energia luminosa, é capaz de substituí-lo por elétrons extraídos de moléculas de água. Com a remoção dos seus elétrons, a molécula de água decompõe-se em prótons (H+) e átomos livres de oxigênio (O). Os prótons são liberados para dentro da membrana tilacóide, vindo a contribuir para o aumento da concentração de prótons no lúmem e a consequente geração de ATP. Já os átomos de oxigênio liberados unem-se imediatamente em pares formando moléculas de gás oxigênio (O2), que são liberadas para a atmosfera. Essa quebra provocada pela oxidação (perda de elétrons) da água em decorrência da energia luminosa é chamada então de fotólise da água.
A equação geral da fotólise da água é a seguinte:
2 H2O → 4e– + 4 H+ + O2
Ciclo das pentoses ou ciclo de Calvin-Benson
Já na fase escura da fotossíntese, ocorre o ciclo das pentoses ou ciclo de Calvin-Benson. Ele consiste em um conjunto de reações que ocorre de forma cíclica, sendo responsável pela produção de glicídios que vão servir de alimento para o organismo. Esse processo realiza a fixação do carbono atmosférico, pois utiliza moléculas de gás carbônico (CO2) como fonte de carbono para a produção dos glicídios.
O ciclo é composto por três etapas. O composto inicial do ciclo é um açúcar de cinco carbonos com um grupo fosfato chamado de ribulose-1,5-bifosfato (RuBP). A partir disso, ocorre a incorporação de uma molécula de CO2 ao RuBP mediada pela enzima chamada de rubisco, o que resulta em duas moléculas de três carbonos cada, chamadas de 3-fosfatoglicerato ou ácido 3-fosfoglicérico (PGA). Dessa forma, a cada 6 moléculas de CO2 incorporadas a 6 moléculas RuBP produz-se 12 moléculas de PGA, sendo esta a quantidade necessária para a realização do ciclo completo e produção de 1 molécula de glicose ao final da fotossíntese.
Na segunda etapa, o PGA é utilizado na produção de um composto chamado de gliceraldeído 3-fosfato ou 3-fosfogliceraldeído (PGAL), de fórmula química C3H6O3. O PGAL é o principal produto do ciclo das pentoses e sua produção inclui duas reações. Na primeira delas o PGA é fosforilado, recebendo o fosfato (Pi) de uma molécula de ATP produzida na fotofosforilação da fase clara. Dessa forma, o PGA passa a ser uma molécula com dois fosfatos chamada de 1,3-bifosfoglicerato e o ATP volta à condição de ADP. A partir disso, ocorre a redução do 1,3-bifosfoglicerato pelo NADPH2 também produzido pela fotofosforilação. Nessa reação de redução o 1,3-bifosfoglicerato tem um dos seus fosfatos removido gerando o PGAL, enquanto o NADPH2 volta à condição de NADP+.
Na terceira etapa, das 12 moléculas de PGAL produzidas, 10 são utilizadas para a regeneração das 6 moléculas de RuBP necessárias para o ciclo se iniciar novamente. Como foi visto, o ciclo das pentoses não forma diretamente a glicose (C6H12O6), mas sim o glicídio chamado de gliceraldeído 3-fosfato (PGAL). As 2 moléculas de PGAL que não são utilizadas para regenerar a RuBP, saem do ciclo, podendo ser transportadas para o citoplasma da célula. A partir dessas duas moléculas de PGAL pode ser produzida uma molécula de glicose.
Assim, desconsiderando a formação posterior de glicose, a produção mais direta de glicídios na fotossíntese pode ser representada pela seguinte fórmula:
3 CO2 + 6 H2O → C3H6O3 + 3 O2 + 3 H2O
O destino dos glicídios
Embora seja comumente representada como o principal carboidrato produzido na fotossíntese, a glicose livre é gerada em baixa quantidade nas células fotossintetizantes. Na verdade, a maior parte das moléculas de PGAL que saem para o citoplasma forma o açúcar sacarose, composto por uma molécula de glicose e uma de frutose.
Parte dos glicídios da fotossíntese é utilizada pelas mitocôndrias na respiração celular, produzindo energia para o organismo realizar suas funções vitais. Outra parte pode vir a integrar a biomassa do ser fotossintetizante através da produção de diversas substâncias orgânicas como aminoácidos, gorduras e celulose. A glicose ainda pode ser convertida em amido e ser armazenada em células especiais do caule e da raiz compondo uma reserva energética para o organismo
Relação Fotossíntese x Respiração
A fotossíntese depende da luz para ocorrer, porém a respiração ocorre independentemente da incidência luminosa. Quanto mais luz no ambiente, maior será a taxa de fotossíntese (até chegar ao ponto de saturação luminosa), enquanto que a taxa de respiração é constante independente da iluminação do ambiente.
A: Ponto de compensação fótica – ocorre quando a taxa de fotossíntese é igual a taxa de respiração.
B: Ponto de saturação luminosa – ocorre quando o cloroplasto já está em sua atividade máxima, ou seja, não consegue realizar mais fotossíntese, mesmo aumentando a intensidade luminosa.
Quando a taxa de fotossíntese é maior que a taxa de respiração, ela acumula reserva e cresce de tamanho. Quando a taxa de fotossíntese é menor que a taxa de respiração, a planta gasta sua reserva energética.
Resumo de Fotossíntese: Exercícios
1) (FUVEST) O gás carbônico e o oxigênio estão envolvidos no metabolismo energético das plantas. Acerca desses gases pode-se dizer que:
a) o oxigênio é produzido apenas à noite;
b) o oxigênio é produzido apenas durante o dia;
c) o gás carbônico é produzido apenas à noite;
d) o gás carbônico é produzido apenas durante o dia;
e) o oxigênio e o gás carbônico são produzidos dia e noite.
b) o oxigênio é produzido apenas durante o dia;
c) o gás carbônico é produzido apenas à noite;
d) o gás carbônico é produzido apenas durante o dia;
e) o oxigênio e o gás carbônico são produzidos dia e noite.
2) (ENEM 2009) A fotossíntese é importante para a vida na Terra. Nos cloroplastos dos organismos fotossintetizantes, a energia solar é convertida em energia química que, juntamente com água e gás carbônico (CO~2~), é utilizada para a síntese de compostos orgânicos (carboidratos). A fotossíntese é o único processo de importância biológica capaz de realizar essa conversão. Todos os organismos, incluindo os produtores, aproveitam a energia armazenada nos carboidratos para impulsionar os processos celulares, liberando CO~2~ para a atmosfera e água para a célula por meio da respiração celular. Além disso, grande fração dos recursos energéticos do planeta, produzidos tanto no presente (biomassa) como em tempos remotos (combustível fóssil), é resultante da atividade fotossintética.
As informações sobre obtenção e transformação dos recursos naturais por meio dos processos vitais de fotossíntese e respiração, descritas no texto, permitem concluir que:
a) o CO2 e a água são moléculas de alto teor energético.
b) os carboidratos convertem energia solar em energia química.
c) a vida na Terra depende, em última análise, da energia proveniente do Sol.
d) o processo respiratório é responsável pela retirada de carbono da atmosfera
e) a produção de biomassa e de combustível fóssil, por si, é responsável pelo aumento de CO2 atmosférico.
b) os carboidratos convertem energia solar em energia química.
c) a vida na Terra depende, em última análise, da energia proveniente do Sol.
d) o processo respiratório é responsável pela retirada de carbono da atmosfera
e) a produção de biomassa e de combustível fóssil, por si, é responsável pelo aumento de CO2 atmosférico.
3) (UFPR 2010) O gráfico abaixo representa o resultado de um experimento em que foi medida a velocidade da fotossíntese em função da temperatura na folha de um vegetal mantida sob iluminação constante.
Com base nesse gráfico e nos conhecimentos acerca do processo de fotossíntese, assinale a alternativa correta.
a) A temperatura atua como fator limitante da fotossíntese porque o calor desnatura as proteínas responsáveis pelo processo.
b) O aumento da temperatura ocasiona um aumento na velocidade de fotossíntese porque a entrada de oxigênio na folha torna-se mais rápida com o aumento da temperatura.
c) O aumento da temperatura faz com que a fotossíntese se acelere por conta do aumento da fosforilação cíclica dependente de O2.
d) Num experimento em que a temperatura fosse mantida constante e a luminosidade fosse aumentando, o resultado permitiria a construção de um gráfico que seria igual ao apresentado.
e) Em temperaturas muito baixas, a velocidade da fotossíntese é pequena em consequência da baixa produção de CO2 necessário ao processo.
b) O aumento da temperatura ocasiona um aumento na velocidade de fotossíntese porque a entrada de oxigênio na folha torna-se mais rápida com o aumento da temperatura.
c) O aumento da temperatura faz com que a fotossíntese se acelere por conta do aumento da fosforilação cíclica dependente de O2.
d) Num experimento em que a temperatura fosse mantida constante e a luminosidade fosse aumentando, o resultado permitiria a construção de um gráfico que seria igual ao apresentado.
e) Em temperaturas muito baixas, a velocidade da fotossíntese é pequena em consequência da baixa produção de CO2 necessário ao processo.
4) As bactérias quimiossintetizantes são capazes de viver em ambientes sem luz e sem matéria orgânica. Isso é possível porque:
a) as bactérias quimiossintetizantes utilizam apenas glicose dos alimentos para produzir energia.
b) as bactérias quimiossintetizantes realizam a oxidação de substâncias inorgânicas para obter energia.
c) as bactérias quimiossintetizantes utilizam apenas água e gás carbônico para produzir energia.
d) as bactérias quimiossintetizantes utilizam gás carbônico e glicose para produzir energia.
b) as bactérias quimiossintetizantes realizam a oxidação de substâncias inorgânicas para obter energia.
c) as bactérias quimiossintetizantes utilizam apenas água e gás carbônico para produzir energia.
d) as bactérias quimiossintetizantes utilizam gás carbônico e glicose para produzir energia.
Gabarito
1) B
2) C
3) A
4) B
fotossíntese- resumao
Reviewed by Celso Rui
on
maio 01, 2020
Rating:
Sem comentários: